Telegram Group & Telegram Channel
📈 Холивар: NumPy против pandas против PySpark — кто рулит в данных

Дата-сайентисты, делитесь: чем копаете свои миллионы строк?

🐍 NumPy — минимализм и математика
• Основа всех ML-библиотек.
• Векторы, матрицы, broadcasting — строго, быстро, эффективно.
• Если ты знаешь np.dot и np.linalg, тебя зовут в глубины ML.

Но:
• Строгая типизация и отсутствие удобных табличек.
• Хотел сделать фильтр по колонке? Сначала reshape.
IndexError: too many indices — старая знакомая.

📊 pandas — король табличек
df.head() — и ты уже видишь суть.
• Гибкость, группировки, фильтрации — словно Excel на стероидах.
• Подходит и для EDA, и для препроцессинга.

Но:
• Большой датасет? Привет, out of memory.
• Интуитивно, но не всегда предсказуемо.
SettingWithCopyWarning — и ты не уверен, изменил ли что-то вообще.

🔥 PySpark — big data и кластеры
• Когда данных слишком много для pandas.
• Распределённые вычисления, lazy evaluation, Spark SQL.
• Подходит для продакшена, когда ноутбук уже плачет.

Но:
• Стартуем JVM… подождите немного.
• Написал три строчки — получил лог на 300 строк.
• Не для быстрых экспериментов.

А вы кто: numpy-ниндзя, pandas-мастер или spark-инженер? Или по чуть-чуть от каждого?
Инструкция о том, как оставить комментарий: https://www.tg-me.com/id/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

Библиотека дата-сайентиста #междусобойчик



tg-me.com/dsproglib/6430
Create:
Last Update:

📈 Холивар: NumPy против pandas против PySpark — кто рулит в данных

Дата-сайентисты, делитесь: чем копаете свои миллионы строк?

🐍 NumPy — минимализм и математика
• Основа всех ML-библиотек.
• Векторы, матрицы, broadcasting — строго, быстро, эффективно.
• Если ты знаешь np.dot и np.linalg, тебя зовут в глубины ML.

Но:
• Строгая типизация и отсутствие удобных табличек.
• Хотел сделать фильтр по колонке? Сначала reshape.
IndexError: too many indices — старая знакомая.

📊 pandas — король табличек
df.head() — и ты уже видишь суть.
• Гибкость, группировки, фильтрации — словно Excel на стероидах.
• Подходит и для EDA, и для препроцессинга.

Но:
• Большой датасет? Привет, out of memory.
• Интуитивно, но не всегда предсказуемо.
SettingWithCopyWarning — и ты не уверен, изменил ли что-то вообще.

🔥 PySpark — big data и кластеры
• Когда данных слишком много для pandas.
• Распределённые вычисления, lazy evaluation, Spark SQL.
• Подходит для продакшена, когда ноутбук уже плачет.

Но:
• Стартуем JVM… подождите немного.
• Написал три строчки — получил лог на 300 строк.
• Не для быстрых экспериментов.

А вы кто: numpy-ниндзя, pandas-мастер или spark-инженер? Или по чуть-чуть от каждого?
Инструкция о том, как оставить комментарий: https://www.tg-me.com/id/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

Библиотека дата-сайентиста #междусобойчик

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6430

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from id


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA